Разложить функцию заданную на периоде. Ряды фурье в примерах и задачах. Разложение функции в ряд Фурье на произвольном периоде

Рядом Фурье функции f(x) на интервале (-π ; π) называется тригонометрический ряд вида:
, где
.

Рядом Фурье функции f(x) на интервале (-l;l) называется тригонометрический ряд вида:
, где
.

Назначение . Онлайн калькулятор предназначен для разложение функции f(x) в Ряд Фурье.

Для функций по модулю (например, |x|), используйте разложение по косинусам .

Ряд Фурье кусочно-непрерывной, кусочно-монотонной и ограниченной на интервале (-l ;l ) функции сходится на всей числовой оси.

Сумма ряда Фурье S (x ):

  • является периодической функцией с периодом 2l . Функция u(x) называется периодической с периодом T (или T-периодической), если для всех x области R, u(x+T)=u(x).
  • на интервале (-l ;l ) совпадает с функцией f (x ), за исключением точек разрыва
  • в точках разрыва (первого рода, т.к. функция ограничена) функции f (x ) и на концах интервала принимает средние значения:
.
Говорят, что функция раскладывается в ряд Фурье на интервале (-l ;l ): .

Если f (x ) – четная функция, то в ее разложении участвуют только четные функции, то есть b n =0.
Если f (x ) – нечетная функция, то в ее разложении участвуют только нечетные функции, то есть а n =0

Рядом Фурье функции f (x ) на интервале (0;l ) по косинусам кратных дуг называется ряд:
, где
.
Рядом Фурье функции f (x ) на интервале (0;l ) по синусам кратных дуг называется ряд:
, где .
Сумма ряда Фурье по косинусам кратных дуг является четной периодической функцией с периодом 2l , совпадающей с f (x ) на интервале (0;l ) в точках непрерывности.
Сумма ряда Фурье по синусам кратных дуг является нечетной периодической функцией с периодом 2l , совпадающей с f (x ) на интервале (0;l ) в точках непрерывности.
Ряд Фурье для данной функции на данном интервале обладает свойством единственности, то есть если разложение получено каким-либо иным способом, чем использование формул, например, при помощи подбора коэффициентов, то эти коэффициенты совпадают с вычисленными по формулам.

Пример №1 . Разложить функцию f (x )=1:
а) в полный ряд Фурье на интервале (-π ;π);
б) в ряд по синусам кратных дуг на интервале (0;π); построить график полученного ряда Фурье
Решение :
а) Разложение в ряд Фурье на интервале(-π;π) имеет вид:
,
причем все коэффициенты b n =0, т.к. данная функция – четная; таким образом,

Очевидно, равенство будет выполнено, если принять
а 0 =2, а 1 =а 2 =а 3 =…=0
В силу свойства единственности это и есть искомые коэффициенты. Таким образом, искомое разложение: или просто 1=1.
В таком случае, когда ряд тождественно совпадает со своей функцией, график ряда Фурье совпадает с графиком функции на всей числовой прямой.
б) Разложение на интервале (0;π) по синусам кратных дуг имеет вид:
Подобрать коэффициенты так, чтобы равенство тождественно выполнялось, очевидно, невозможно. Воспользуемся формулой для вычисления коэффициентов:


Таким образом, для четных n (n =2k ) имеем b n =0, для нечетных (n =2k -1) -
Окончательно, .
Построим график полученного ряда Фурье, воспользовавшись его свойствами (см. выше).
Прежде всего, строим график данной функции на заданном интервале. Далее, воспользовавшись нечетностью суммы ряда, продолжаем график симметрично началу координат:

Продолжаем периодическим образом на всей числовой оси:


И наконец, в точках разрыва заполняем средние (между правым и левым пределом) значения:

Пример №2 . Разложить функцию на интервале (0;6) по синусам кратных дуг
Решение : Искомое разложение имеет вид:

Поскольку и левая, и правая части равенства содержат только функции sin от различных аргументов, следует проверить, совпадают ли при каких-либо значениях n (натуральных!) аргументы синусов в левой и правой частях равенства:
или , откуда n =18. Значит, такое слагаемое содержится в правой части и коэффициент при нем должен совпадать с коэффициентом в левой части: b 18 =1;
или , откуда n =4. Значит, b 4 =-5.
Таким образом, при помощи подбора коэффициентов удалось получить искомое разложение:

Функция , определённая при всех значениях x называется периодической , если существует такое число T (T≠ 0) , что при любом значении x выполняется равенство f(x + T) = f(x) . Число T в этом случае является периодом функции.

Свойства периодических функций :

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.

2) Если функция f(x) имеет период Т ,то функция f(ax) имеет период

В самом деле, для любого аргумента х :

(умножение аргумента на число означает сжатие или растяжение графика этой функции вдоль оси ОХ )

Например, функция имеет период , периодом функции является

3) Если f(x) периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежутку длины Т (при этом предполагается, что эти интегралы существуют).

Ряд Фурье для функции с периодом T= .

Тригонометрическим рядом называется ряд вида:

или, короче,

Где , , , , , … , , , … - действительные числа, называемые коэффициентами ряда.

Каждое слагаемое тригонометрического ряда является периодической функцией периода (т.к. - имеет любой

период, а период () равен , а значит, и ). Каждое слагаемое (), при n= 1,2,3… является аналитическим выражением простого гармонического колебания , где A - амплитуда,

Начальная фаза. Учитывая сказанное, получаем: если тригонометрический ряд сходится на отрезке длины периода , то он сходится на всей числовой оси и его сумма является периодической функцией периода .

Пусть тригонометрический ряд равномерно сходится на отрезке (следовательно, и на любом отрезке) и его сумма равна . Для определения коэффициентов этого ряда воспользуемся следующими равенствами:

А так же воспользуемся следующими свойствами.

1) Как известно, сумма равномерно сходящегося на некотором отрезке ряда, составленного из непрерывных функций, сама является непрерывной функцией на этом отрезке. Учитывая это, получим, что сумма равномерно сходящегося на отрезке тригонометрического ряда - непрерывная функция на всей числовой оси.

2) Равномерная сходимость ряда на отрезке не нарушится, если все члены ряда умножить на функцию , непрерывную на этом отрезке.

В частности, равномерная сходимость на отрезке данного тригонометрического ряда не нарушится, если все члены ряда умножить на или на .

По условию

В результате почленного интегрирования равномерно сходящегося ряда (4.2) и учитывая вышеприведенные равенства (4.1) (ортогональность тригонометрических функций), получим:

Следовательно, коэффициент

Умножая равенство (4.2) на , интегрируя это равенство в пределах от до и, учитывая вышеприведенные выражения (4.1), получим:


Следовательно, коэффициент

Аналогично, умножая равенство (4.2) на и интегрируя его в пределах от до , с учетом равенств (4.1) имеем:

Следовательно, коэффициент

Таким образом, получены следующие выражения для коэффициентов ряда Фурье:

Достаточные признаки разложимости функции в ряд Фурье. Напомним, что точку x o разрыва функции f(x) называют точкой разрыва первого рода, если существуют конечные пределы справа и слева функции f(x) в окрестности точки.

Предел справа,

Предел слева.

Теорема (Дирихле). Если функция f(x) имеет период и на отрезке непрерывна или имеет конечное число точек разрыва первого рода и, кроме того, отрезок можно разбить на конечное число отрезков так, что внутри каждого из них f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях x . Причём в точках непрерывности функции f(x) его сумма равна f(x) , а в точках разрыва функции f(x) его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. Кроме того, ряд Фурье для функции f(x) сходится равномерно на любом отрезке, который вместе со своими концами принадлежит интервалу непрерывности функции f(x) .

Пример : разложить в ряд Фурье функцию

Удовлетворяющую условию .

Решение. Функция f(x) удовлетворяет условиям разложимости в ряд Фурье, поэтому можно записать:

В соответствии с формулами (4.3) , можно получить следующие значения коэффициентов ряда Фурье:

При вычислении коэффициентов ряда Фурье использовалась формула «интегрирования по частям».

И, следовательно,

Ряды Фурье для чётных и нечётных функций с периодом T = .

Используем следующее свойство интеграла по симметричному относительно x=0 промежутку:

Если f(x) - нечётная функция,

если f(x) - чётная функция.

Заметим, что произведение двух чётных или двух нечётных функций - чётная функция, а произведение чётной функции на нечётную функцию - нечётная функция. Пусть теперь f(x) - чётная периодическая функция с периодом , удовлетворяющая условиям разложимости в ряд Фурье. Тогда, используя вышеуказанное свойство интегралов, получим:

Таким образом, ряд Фурье для чётной функции содержит только чётные функции - косинусы и записывается так:

а коэффициенты bn = 0.

Рассуждая аналогично, получаем, что если f(x) - нечётная периодическая функция, удовлетворяющая условиям разложимости в ряд Фурье, то, следовательно, ряд Фурье для функции нечётной содержит только нечётные функции - синусы и записывается следующим образом:

при этом an =0 при n= 0, 1,…

Пример: разложить в ряд Фурье периодическую функцию

Так как заданная нечетная функция f(x) удовлетворяет условиям разложимости в ряд Фурье, то

или, что то же,

И ряд Фурье для данной функции f(x) можнозаписать так:

Ряды Фурье для функций любого периода T=2l .

Пусть f(x) - периодическая функция любого периода T=2l (l- полупериод), кусочно-гладкая или кусочно-монотонная на отрезке [-l, l ]. Полагая x=at, получим функцию f(at) аргумента t, период которой равен . Подберём а так, чтобы период функции f(at) был равен , т.е. T = 2l

Решение. Функция f(x) - нечётная, удовлетворяющая условиям разложимости в ряд Фурье, поэтому на основании формул (4.12) и (4.13) имеем:

(при вычислении интеграла использовали формулу «интегрирования по частям»).

Ряд Фурье периодических функций с периодом 2π.

Ряд Фурье позволяет изучать периодические функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны - это типичные практические примеры применения периодических функций в инженерных расчетах.

Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов (ряд считается сходящимся, если сходится последовательность частичных сумм, составленных из его членов):

Стандартная (=обычная) запись через сумму sinx и cosx

f(x)=a o + a 1 cosx+a 2 cos2x+a 3 cos3x+...+b 1 sinx+b 2 sin2x+b 3 sin3x+...,

где a o , a 1 ,a 2 ,...,b 1 ,b 2 ,.. - действительные константы, т.е.

Где для диапазона от -π до π коэффициенты ряда Фурье рассчитываются по формулам:

Коэффициенты a o ,a n и b n называются коэффициентами Фурье , и если их можно найти, то ряд (1) называется рядом Фурье, соответствующим функции f(x). Для ряда (1) член (a 1 cosx+b 1 sinx) называется первой или основной гармоникой,

Другой способ записи ряда - использование соотношения acosx+bsinx=csin(x+α)

f(x)=a o +c 1 sin(x+α 1)+c 2 sin(2x+α 2)+...+c n sin(nx+α n)

Где a o - константа, с 1 =(a 1 2 +b 1 2) 1/2 , с n =(a n 2 +b n 2) 1/2 - амплитуды различных компонент, а равен a n =arctg a n /b n .

Для ряда (1) член (a 1 cosx+b 1 sinx) или c 1 sin(x+α 1) называется первой или основной гармоникой, (a 2 cos2x+b 2 sin2x) или c 2 sin(2x+α 2) называется второй гармоникой и так далее.

Для точного представления сложного сигнала обычно требуется бесконечное количество членов. Однако во многих практических задачах достаточно рассмотреть только несколько первых членов.

Ряд Фурье непериодических функций с периодом 2π.

Разложение непериодических функций.

Если функция f(x) непериодическая, значит, она не может быть разложена в ряд Фурье для всех значений х. Однако можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π.

Если задана непериодическая функция, можно составить новую функцию, выбирая значения f(x) в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π. Поскольку новая функция является периодической с периодом 2π, ее можно разложить в ряд Фурье для всех значений х. Например, функция f(x)=x не является периодической. Однако, если необходимо разложить ее в ряд Фурье на интервале от о до 2π, тогда вне этого интервала строится периодическая функция с периодом 2π (как показано на рис. ниже) .

Для непериодических функций, таких как f(x)=х, сумма ряда Фурье равна значению f(x) во всех точках заданного диапазона, но она не равна f(x) для точек вне диапазона. Для нахождения ряда Фурье непериодической функции в диапазоне 2π используется все таже формула коэффициентов Фурье.

Четные и нечетные функции.

Говорят, функция y=f(x) четная , если f(-x)=f(x) для всех значений х. Графики четных функций всегда симметричны относительно оси у (т.е. являются зеркально отраженными). Два примера четных функций: у=х 2 и у=cosx.

Говорят, что функция y=f(x) нечетная, если f(-x)=-f(x) для всех значений х. Графики нечетных функций всегда симметричны относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Разложение в ряд Фурье по косинусам.

Ряд Фурье четной периодической функции f(x) с периодом 2π содержит только члены с косинусами (т.е. не содержит членов с синусами) и может включать постоянный член. Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье нечетной периодической функции f(x) с периодом 2π содержит только члены с синусами (т.е. не содержит членов с косинусами).

Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье на полупериоде.

Если функция определена для диапазона, скажем от 0 до π, а не только от 0 до 2π, ее можно разложить в ряд только по синусам или тольо по косинусам. Полученный ряд Фурье называется рядом Фурье на полупериоде.

Если требуется получить разложение Фурье на полупериоде по косинусам функции f(x) в диапазоне от 0 до π, то необходимо составить четную периодическую функцию. На рис. ниже показана функция f(x)=х, построенная на интервале от х=0 до х=π. Поскольку четная функция симметрична относительно оси f(x), проводим линию АВ, как показано на рис. ниже. Если предположить, что за пределами рассмотренного интервала полученная треугольная форма является периодической с периодом 2π, то итоговый график имеет вид, показ. на рис. ниже. Поскольку требуется получить разложение Фурье по косинусам, как и ранее, вычисляем коэффициенты Фурье a o и a n

Если требуется получить разложение Фурье на полупериоде по синусам функции f(x) в диапазоне от 0 до π, то необходимо составить нечетную периодическую функцию. На рис. ниже показана функция f(x)=x, построенная на интервале от от х=0 до х=π. Поскольку нечетная функция симметрична относительно начала координат, строим линию CD, как показано на рис. Если предположить, что за пределами рассмотренного интервала полученный пилообразный сигнал является периодическим с периодом 2π, то итоговый график имеет вид, показанный на рис. Поскольку требуется получить разложение Фурие на полупериоде по синусам, как и ранее, вычисляем коэффициент Фурье. b

Ряд Фурье для произвольного интервала.

Разложение периодической функции с периодом L.

Периодическая функция f(x) повторяется при увеличении х на L, т.е. f(x+L)=f(x). Переход от рассмотренных ранее функций с периодом 2π к функциям с периодом L довольно прост, поскольку его можно осуществить с помощью замены переменной.

Чтобы найти ряд Фурье функции f(x) в диапазоне -L/2≤x≤L/2, введем новую переменную u таким образом, чтобы функция f(x) имела период 2π относительно u. Если u=2πх/L, то х=-L/2 при u=-π и х=L/2 при u=π. Также пусть f(x)=f(Lu/2π)=F(u). Ряд Фурье F(u) имеет вид

(Пределы интегрирования могут быть заменены на любой интервал длиной L, например, от 0 до L)

Ряд Фурье на полупериоде для функций, заданных в интервале L≠2π.

Для подстановки u=πх/L интервал от х=0 до х=L соответствует интервалу от u=0 до u=π. Следовательно, функцию можно разложить в ряд только по косинусам или только по синусам, т.е. в ряд Фурье на полупериоде .

Разложение по косинусам в диапазоне от 0 до L имеет вид

Которые уже порядком поднадоели. И я чувствую, что настал момент, когда из стратегических запасов теории пора извлечь новые консервы. Нельзя ли разложить функцию в ряд как-нибудь по-другому? Например, выразить отрезок прямой линии через синусы и косинусы? Кажется невероятным, но такие, казалось бы, далекие друг от друга функции поддаются
«воссоединению». Помимо примелькавшихся степеней в теории и практике существуют и другие подходы к разложению функции в ряд.

На данном уроке мы познакомимся с тригонометрическим рядом Фурье, коснёмся вопроса его сходимости и суммы и, конечно же, разберём многочисленные примеры на разложение функций в ряд Фурье. Искренне хотелось назвать статью «Ряды Фурье для чайников», но это было бы лукавством, поскольку для решения задач потребуются знания других разделов математического анализа и некоторый практический опыт. Поэтому преамбула будет напоминать подготовку космонавтов =)

Во-первых, к изучению материалов страницы следует подойти в отличной форме. Выспавшимися, отдохнувшими и трезвыми. Без сильных эмоций по поводу сломанной лапы хомячка и навязчивых мыслей о тяготах жизни аквариумных рыбок. Ряд Фурье не сложен с точки зрения понимания, однако практические задания требуют просто повышенной концентрации внимания – в идеале следует полностью отрешиться от внешних раздражителей. Ситуация усугубляется тем, что не существует лёгкого способа проверки решения и ответа. Таким образом, если ваше самочувствие ниже среднего, то лучше заняться чем-нибудь попроще. Правда.

Во-вторых, перед полётом в космос необходимо изучить приборную панель космического корабля. Начнём со значений функций, которые должны щёлкаться на автомате:

При любом натуральном значении :

1) . И в самом деле, синусоида «прошивает» ось абсцисс через каждое «пи»:
. В случае отрицательных значений аргумента результат, само собой, будет таким же: .

2) . А вот это знали не все. Косинус «пи эн» представляет собой эквивалент «мигалки»:

Отрицательный аргумент дела не меняет: .

Пожалуй, достаточно.

И, в-третьих, уважаемый отряд космонавтов, необходимо уметь… интегрировать .
В частности, уверенно подводить функцию под знак дифференциала , интегрировать по частям и быть в ладах с формулой Ньютона-Лейбница . Начнём важные предполётные упражнения. Категорически не рекомендую пропускать, чтобы потом не плющило в невесомости:

Пример 1

Вычислить определённые интегралы

где принимает натуральные значения.

Решение : интегрирование проводится по переменной «икс» и на данном этапе дискретная переменная «эн» считается константой. Во всех интегралах подводим функцию под знак дифференциала :

Короткая версия решения, к которой хорошо бы пристреляться, выглядит так:

Привыкаем:

Четыре оставшихся пункта самостоятельно. Постарайтесь добросовестно отнестись к заданию и оформить интегралы коротким способом. Образцы решений в конце урока.

После КАЧЕСТВЕННОГО выполнения упражнений надеваем скафандры
и готовимся к старту!

Разложение функции в ряд Фурье на промежутке

Рассмотрим некоторую функцию , которая определена по крайне мере на промежутке (а, возможно, и на бОльшем промежутке). Если данная функция интегрируема на отрезке , то её можно разложить в тригонометрический ряд Фурье :
, где – так называемые коэффициенты Фурье .

При этом число называют периодом разложения , а число – полупериодом разложения .

Очевидно, что в общем случае ряд Фурье состоит из синусов и косинусов:

Действительно, распишем его подробно:

Нулевой член ряда принято записывать в виде .

Коэффициенты Фурье рассчитываются по следующим формулам:

Прекрасно понимаю, что начинающим изучать тему пока малопонятны новые термины: период разложения , полупериод , коэффициенты Фурье и др. Без паники, это не сравнимо с волнением перед выходом в открытый космос. Во всём разберёмся в ближайшем примере, перед выполнением которого логично задаться насущными практическими вопросами:

Что нужно сделать в нижеследующих заданиях?

Разложить функцию в ряд Фурье. Дополнительно нередко требуется изобразить график функции , график суммы ряда , частичной суммы и в случае изощрённых профессорский фантазий – сделать что-нибудь ещё.

Как разложить функцию в ряд Фурье?

По существу, нужно найти коэффициенты Фурье , то есть, составить и вычислить три определённых интеграла .

Пожалуйста, перепишите общий вид ряда Фурье и три рабочие формулы к себе в тетрадь. Я очень рад, что у некоторых посетителей сайта прямо на моих глазах осуществляется детская мечта стать космонавтом =)

Пример 2

Разложить функцию в ряд Фурье на промежутке . Построить график , график суммы ряда и частичной суммы .

Решение : первая часть задания состоит в разложении функции в ряд Фурье.

Начало стандартное, обязательно записываем, что:

В данной задаче период разложения , полупериод .

Разложим функцию в ряд Фурье на промежутке :

Используя соответствующие формулы, найдём коэффициенты Фурье . Теперь нужно составить и вычислить три определённых интеграла . Для удобства я буду нумеровать пункты:

1) Первый интеграл самый простой, однако и он уже требует глаз да глаз:

2) Используем вторую формулу:

Данный интеграл хорошо знаком и берётся он по частям :

При нахождении использован метод подведения функции под знак дифференциала .

В рассматриваемом задании сподручнее сразу использовать формулу интегрирования по частям в определённом интеграле :

Пара технических замечаний. Во-первых, после применения формулы всё выражение нужно заключить в большие скобки , так как перед исходным интегралом находится константа . Не теряем её ! Скобки можно раскрыть на любом дальнейшем шаге, я это сделал в самую последнюю очередь. В первом «куске» проявляем крайнюю аккуратность в подстановке, как видите, константа не при делах, и пределы интегрирования подставляются в произведение . Данное действие выделено квадратными скобками. Ну а интеграл второго «куска» формулы вам хорошо знаком из тренировочного задания;-)

И самое главное – предельная концентрация внимания!

3) Ищем третий коэффициент Фурье:

Получен родственник предыдущего интеграла, который тоже интегрируется по частям :

Этот экземпляр чуть сложнее, закомментирую дальнейшие действия пошагово:

(1) Выражение полностью заключаем в большие скобки . Не хотел показаться занудой, слишком уж часто теряют константу .

(2) В данном случае я немедленно раскрыл эти большие скобки. Особое внимание уделяем первому «куску»: константа курит в сторонке и не участвует в подстановке пределов интегрирования ( и ) в произведение . Ввиду загромождённости записи это действие снова целесообразно выделить квадратными скобками. Со вторым «куском» всё проще: здесь дробь появилась после раскрытия больших скобок, а константа – в результате интегрирования знакомого интеграла;-)

(3) В квадратных скобках проводим преобразования , а в правом интеграле – подстановку пределов интегрирования.

(4) Выносим «мигалку» из квадратных скобок: , после чего раскрываем внутренние скобки: .

(5) Сокращаем 1 и –1 в скобках, проводим окончательные упрощения.

Наконец-то найдены все три коэффициента Фурье:

Подставим их в формулу :

При этом не забываем разделить пополам. На последнем шаге константа («минус два»), не зависящая от «эн», вынесена за пределы суммы.

Таким образом, мы получили разложение функции в ряд Фурье на промежутке :

Изучим вопрос сходимости ряда Фурье. Я объясню теорию, в частности теорему Дирихле , буквально «на пальцах», поэтому если вам необходимы строгие формулировки, пожалуйста, обратитесь к учебнику по математическому анализу (например, 2-й том Бохана; или 3-й том Фихтенгольца, но в нём труднее) .

Во второй части задачи требуется изобразить график , график суммы ряда и график частичной суммы .

График функции представляет собой обычную прямую на плоскости , которая проведена чёрным пунктиром:

Разбираемся с суммой ряда . Как вы знаете, функциональные ряды сходятся к функциям. В нашем случае построенный ряд Фурье при любом значении «икс» сойдётся к функции , которая изображена красным цветом. Данная функция терпит разрывы 1-го рода в точках , но определена и в них (красные точки на чертеже)

Таким образом: . Легко видеть, что заметно отличается от исходной функции , именно поэтому в записи ставится значок «тильда», а не знак равенства.

Изучим алгоритм, по которому удобно строить сумму ряда.

На центральном интервале ряд Фурье сходится к самой функции (центральный красный отрезок совпадает с чёрным пунктиром линейной функции).

Теперь немного порассуждаем о природе рассматриваемого тригонометрического разложения. В ряд Фурье входят только периодические функции (константа, синусы и косинусы), поэтому сумма ряда тоже представляет собой периодическую функцию .

Что это значит в нашем конкретном примере? А это обозначает то, что сумма ряда непременно периодична и красный отрезок интервала обязан бесконечно повторяться слева и справа.

Думаю, сейчас окончательно прояснился смысл фразы «период разложения ». Упрощённо говоря, через каждые ситуация вновь и вновь повторяется.

На практике обычно достаточно изобразить три периода разложения, как это сделано на чертеже. Ну и ещё «обрубки» соседних периодов – чтобы было понятно, что график продолжается.

Особый интерес представляют точки разрыва 1-го рода . В таких точках ряд Фурье сходится к изолированным значениям, которые расположены ровнёхонько посередине «скачка» разрыва (красные точки на чертеже). Как узнать ординату этих точек? Сначала найдём ординату «верхнего этажа»: для этого вычислим значение функции в крайней правой точке центрального периода разложения: . Чтобы вычислить ординату «нижнего этажа» проще всего взять крайнее левое значение этого же периода: . Ордината среднего значения – это среднее арифметическое суммы «верха и низа»: . Приятным является тот факт, что при построении чертежа вы сразу увидите, правильно или неправильно вычислена середина.

Построим частичную сумму ряда и заодно повторим смысл термина «сходимость». Мотив известен ещё из урока о сумме числового ряда . Распишем наше богатство подробно:

Чтобы составить частичную сумму необходимо записать нулевой + ещё два члена ряда. То есть,

На чертеже график функции изображен зелёным цветом, и, как видите, он достаточно плотно «обвивает» полную сумму . Если рассмотреть частичную сумму из пяти членов ряда , то график этой функции будет ещё точнее приближать красные линии, если сто членов – то «зелёный змий» фактически полностью сольётся с красными отрезками и т.д. Таким образом, ряд Фурье сходится к своей сумме .

Интересно отметить, что любая частичная сумма – это непрерывная функция , однако полная сумма ряда всё же разрывна.

На практике не так уж редко требуется построить и график частичной суммы. Как это сделать? В нашем случае необходимо рассмотреть функцию на отрезке , вычислить её значения на концах отрезка и в промежуточных точках (чем больше точек рассмотрите – тем точнее будет график). Затем следует отметить данные точки на чертеже и аккуратно изобразить график на периоде , после чего «растиражировать» его на соседние промежутки. А как иначе? Ведь приближение – это тоже периодическая функция… …чем-то мне её график напоминает ровный ритм сердца на дисплее медицинского прибора.

Выполнять построение, конечно, не сильно удобно, так как и приходится проявлять сверхаккуратность, выдерживая точность не меньше, чем до половины миллиметра. Впрочем, читателей, которые не в ладах с черчением, обрадую – в «реальной» задаче выполнять чертёж нужно далеко не всегда, где-то в 50% случаев требуется разложить функцию в ряд Фурье и всё.

После выполнения чертежа завершаем задание:

Ответ :

Во многих задачах функция терпит разрыв 1-го рода прямо на периоде разложения:

Пример 3

Разложить в ряд Фурье функцию , заданную на отрезке . Начертить график функции и полной суммы ряда.

Предложенная функция задана кусочным образом (причём, заметьте, только на отрезке ) и терпит разрыв 1-го рода в точке . Можно ли вычислить коэффициенты Фурье? Без проблем. И левая и правая части функции интегрируемы на своих промежутках, поэтому интегралы в каждой из трёх формул следует представить в виде суммы двух интегралов. Посмотрим, например, как это делается у нулевого коэффициента:

Второй интеграл оказался равным нулю, что убавило работы, но так бывает далеко не всегда.

Аналогично расписываются два других коэффициента Фурье.

Как изобразить сумму ряда? На левом интервале чертим отрезок прямой , а на интервале – отрезок прямой (жирно-жирно выделяем участок оси ). То есть, на промежутке разложения сумма ряда совпадает с функцией везде, кроме трёх «нехороших» точек. В точке разрыва функции ряд Фурье сойдётся к изолированному значению, которое располагается ровно посередине «скачка» разрыва. Его нетрудно увидеть и устно: левосторонний предел: , правосторонний предел: и, очевидно, что ордината средней точки равна 0,5.

В силу периодичности суммы , картинку необходимо «размножить» на соседние периоды, в частности изобразить то же самое на интервалах и . При этом, в точках ряд Фурье сойдётся к срединным значениям.

По сути-то ничего нового здесь нет.

Постарайтесь самостоятельно справиться с данной задачей. Примерный образец чистового оформления и чертёж в конце урока.

Разложение функции в ряд Фурье на произвольном периоде

Для произвольного периода разложения , где «эль» – любое положительное число, формулы ряда Фурье и коэффициентов Фурье отличаются немного усложнённым аргументом синуса и косинуса:

Если , то получаются формулы промежутка , с которых мы начинали.

Алгоритм и принципы решения задачи полностью сохраняются, но возрастает техническая сложность вычислений:

Пример 4

Разложить функцию в ряд Фурье и построить график суммы.

Решение : фактически аналог Примера №3 с разрывом 1-го рода в точке . В данной задаче период разложения , полупериод . Функция определена только на полуинтервале , но это не меняет дела – важно, что оба куска функции интегрируемы.

Разложим функцию в ряд Фурье:

Поскольку функция разрывна в начале координат, то каждый коэффициент Фурье очевидным образом следует записать в виде суммы двух интегралов:

1) Первый интеграл распишу максимально подробно:

2) Тщательным образом вглядываемся в поверхность Луны:

Второй интеграл берём по частям :

На что следует обратить пристальное внимание, после того, как мы звёздочкой открываем продолжение решения?

Во-первых, не теряем первый интеграл , где сразу же выполняем подведение под знак дифференциала . Во-вторых, не забываем злополучную константу перед большими скобками и не путаемся в знаках при использовании формулы . Большие скобки, всё-таки удобнее раскрывать сразу же на следующем шаге.

Остальное дело техники, затруднения может вызвать только недостаточный опыт решенияинтегралов.

Да, не зря именитые коллеги французского математика Фурье возмущались – как это тот посмел раскладывать функции в тригонометрические ряды?! =) К слову, наверное, всем интересен практический смысл рассматриваемого задания. Сам Фурье работал над математической моделью теплопроводности, а впоследствии ряд, названный его именем стал применяться для исследования многих периодических процессов, коих в окружающем мире видимо-невидимо. Сейчас, кстати, поймал себя на мысли, что не случайно сравнил график второго примера с периодическим ритмом сердца. Желающие могут ознакомиться с практическим применением преобразования Фурье в сторонних источниках. …Хотя лучше не надо – будет вспоминаться, как Первая Любовь =)

3) Учитывая неоднократно упоминавшиеся слабые звенья, разбираемся с третьим коэффициентом:

Интегрируем по частям:

Подставим найдённые коэффициенты Фурье в формулу , не забывая поделить нулевой коэффициент пополам:

Построим график суммы ряда. Кратко повторим порядок действий: на интервале строим прямую , а на интервале – прямую . При нулевом значении «икс» ставим точку посередине «скачка» разрыва и «тиражируем» график на соседние периоды:


На «стыках» периодов сумма также будет равна серединам «скачка» разрыва .

Готово. Напоминаю, что сама функция по условию определена только на полуинтервале и, очевидно, совпадает с суммой ряда на интервалах

Ответ :

Иногда кусочно-заданная функция бывает и непрерывна на периоде разложения. Простейший образец: . Решение (см. 2-й том Бохана) такое же, как и двух предыдущих примерах: несмотря на непрерывность функции в точке , каждый коэффициент Фурье выражается суммой двух интегралов.

На промежутке разложения точек разрыва 1-го рода и/или точек «стыка» графика может быть и больше (две, три и вообще любое конечное количество). Если функция интегрируема на каждой части, то она также разложима в ряд Фурье. Но из практического опыта такую жесть что-то не припоминаю. Тем не менее, встречаются более трудные задания, чем только что рассмотренное, и в конце статьи для всех желающих есть ссылки на ряды Фурье повышенной сложности.

А пока расслабимся, откинувшись в креслах и созерцая бескрайние звёздные просторы:

Пример 5

Разложить функцию в ряд Фурье на промежутке и построить график суммы ряда.

В данной задаче функция непрерывна на полуинтервале разложения, что упрощает решение. Всё очень похоже на Пример №2. С космического корабля никуда не деться – придётся решать =) Примерный образец оформления в конце урока, график прилагается.

Разложение в ряд Фурье чётных и нечётных функций

С чётными и нечётными функциями процесс решения задачи заметно упрощается. И вот почему. Вернёмся к разложению функции в ряд Фурье на периоде «два пи» и произвольном периоде «два эль» .

Предположим, что наша функция чётна. Общий же член ряда, как вы видите, содержит чётные косинусы и нечётные синусы. А если мы раскладываем ЧЁТНУЮ функцию, то зачем нам нечётные синусы?! Давайте обнулим ненужный коэффициент: .

Таким образом, чётная функция раскладывается в ряд Фурье только по косинусам :

Поскольку интегралы от чётных функций по симметричному относительно нуля отрезку интегрирования можно удваивать, то упрощаются и остальные коэффициенты Фурье.

Для промежутка :

Для произвольного промежутка:

К хрестоматийным примерам, которые есть практически в любом учебнике по матанализу, относятся разложения чётных функций . Кроме того, они неоднократно встречались и в моей личной практике:

Пример 6

Дана функция . Требуется:

1) разложить функцию в ряд Фурье с периодом , где – произвольное положительное число;

2) записать разложение на промежутке , построить функцию и график полной суммы ряда .

Решение : в первом пункте предлагается решить задачу в общем виде, и это очень удобно! Появится надобность – просто подставьте своё значение.

1) В данной задаче период разложения , полупериод . В ходе дальнейших действий, в частности при интегрировании, «эль» считается константой

Функция является чётной, а значит, раскладывается в ряд Фурье только по косинусам: .

Коэффициенты Фурье ищем по формулам . Обратите внимание на их безусловные преимущества. Во-первых, интегрирование проводится по положительному отрезку разложения, а значит, мы благополучно избавляемся от модуля , рассматривая из двух кусков только «икс». И, во-вторых, заметно упрощается интегрирование.

Два:

Интегрируем по частям:

Таким образом:
, при этом константу , которая не зависит от «эн», выносим за пределы суммы.

Ответ :

2) Запишем разложение на промежутке , для этого в общую формулу подставляем нужное значение полупериода :

Тригонометрическим рядом Фурье называется ряд вида

a 0 /2 + a 1 cosx + b 1 sinx + a 2 cos2x + b 2 sin2x + ... + a n cosnx + b n sinnx + ...

где числа a 0 , a 1 , b 1 , a 2 , b 2 , ..., a n , b n , ... - коэффициенты Фурье.

Более сжатая запись ряда Фурье с символом "сигма":

Как мы только что установили, в отличие от степенного ряда , в ряде Фурье вместо простейших функций взяты тригонометрические функции

1/2, cosx , sinx , cos2x , sin2x , ..., cosnx , sinnx , ... .

Коэффициенты Фурье вычисляются по следующим формулам:

,

,

.

Все вышеперечисленные функции в ряде Фурье являются периодическими функциями с периодом 2π . Каждый член тригонометрического ряда Фурье является периодической функцией с периодом 2π .

Поэтому и любая частичная сумма ряда Фурье имеет период 2π . Отсюда следует, что если ряд Фурье сходится на отрезке [-π , π ] , то он сходится на всей числовой прямой и его сумма, будучи пределом последовательности периодических частичных сумм, является периодической функцией с периодом 2π .

Сходимость ряда Фурье и сумма ряда

Пусть функция F (x ) , определённая на всей числовой прямой и периодическая с периодом 2π , является периодическим продолжением функции f (x ) , если на отрезке [-π , π ] имеет место F (x ) = f (x )

Если на отрезке [-π , π ] ряд Фурье сходится к функции f (x ) , то он сходится на всей числовой прямой к её периодическому продолжению.

Ответ на вопрос о том, при каких условиях ряд Фурье функции f (x ) сходится к этой функции, даёт следующая теорема.

Теорема. Пусть функция f (x ) и её производная f " (x ) - непрерывные на отрезке [-π , π ] или же имеют на нём конечное число точек разрыва 1-го рода. Тогда ряд Фурье функции f (x ) сходится на всей числовой прямой, причём в каждой точке x , принадлежащей отрезку [-π , π ] , в которой f (x ) непрерывна, сумма ряда равна f (x ) , а в каждой точке x 0 разрыва функции сумма ряда равна среднему арифметическому пределов функции f (x ) справа и слева:

,

где и .

На концах отрезка [-π , π ] сумма ряда равна среднему арифметическому значений функции в крайней левой и крайней правой точках периода разложения:

.

В любой точке x , принадлежащей отрезку [-π , π ] , сумма ряда Фурье равна F (x ) , если x - точка непрерывности F (x ) , и равна среднему арифметическому пределов F (x ) слева и справа:

,

если x - точка разрыва F (x ) , где F (x ) - периодическое продолжение f (x ) .

Пример 1. Периодическая функция f (x ) с периодом 2π определена следующим образом:

Проще эта функция записывается как f (x ) = |x | . Разложить функцию в ряд Фурье, определить сходимость ряда и сумму ряда.

Решение. Определим коэффициенты Фурье этой функции:

Теперь у нас есть всё, чтобы получить ряд Фурье данной функции:

Этот ряд сходится во всех точках, и его сумма равна данной функции.

Решить задачу на ряды Фурье самостоятельно, а затем посмотреть решение

Ряды Фурье для чётных и нечётных функций

Пусть функция f (x ) определена на отрезке [-π , π ] и является чётной, т. е. f (- x ) = f (x ) . Тогда её коэффициенты b n равны нулю. А для коэффициентов a n верны следующие формулы:

,

.

Пусть теперь функция f (x ) , определённая на отрезке [-π , π ] , нечётная, т.е. f (x ) = - f (- x ) . Тогда коэффициенты Фурье a n равны нулю, а коэффициенты b n определяется формулой

.

Как видно из формул, выведенных выше, если функция f (x ) чётная, то ряд Фурье содержит только косинусы, а если нечётная, то только синусы .

Пример 3.

Решение. Это нечётная функция, поэтому её коэффициенты Фурье , а чтобы найти , нужно вычислить определённый интеграл :

.

Это равенство справедливо для любого . В точках сумма ряда Фурье по приведённой во втором параграфе теореме не совпадает со значениями функции , а равна . Вне отрезка сумма ряда является периодическим продолжением функции , её график приводился выше в качестве иллюстрации суммы ряда.

Пример 4. Разложить в ряд Фурье функцию .

Решение. Это чётная функция, поэтому её коэффициенты Фурье , а чтобы найти , нужно вычислить определённые интегралы :

Получаем ряд Фурье данной функции:

.

Это равенство справедливо для любого , так как в точках сумма ряда Фурье в данном случае совпадает со значениями функции , поскольку .

jardam1.ru - Государство и человек